def test_medium_conv_batchnorm_random(self):
np.random.seed(1988)
input_dim = 10
input_shape = (input_dim, input_dim, 3)
num_kernels = 3
kernel_height = 5
kernel_width = 5
data_mean = 2
data_var = 1
# Define a model
from keras.layers.normalization import BatchNormalization
model = Sequential()
model.add(Convolution2D(input_shape = input_shape,
nb_filter = num_kernels, nb_row = kernel_height,
nb_col = kernel_width))
model.add(BatchNormalization(epsilon=1e-5))
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
# Get the coreml model
self._test_keras_model(model)
评论列表
文章目录