def __init__(self, in_channels, out_channels, ksize, stride=1, pad=0, initialV=None, nobias=False, cover_all=False):
super(Convolution1D, self).__init__()
ksize = conv_nd.as_tuple(ksize, 1)
self.ksize = ksize
self.nobias = nobias
self.stride = stride
self.pad = pad
self.out_channels = out_channels
self.in_channels = in_channels
self.cover_all = cover_all
self.initialV = initialV
with self.init_scope():
V_shape = (out_channels, in_channels) + ksize
initialV = initializers._get_initializer(initialV)
self.V = Parameter(initialV, V_shape)
if nobias:
self.b = None
评论列表
文章目录