def score_core(self, X, y=None, sample_weight=None, batchsize=16):
# Type check
X, y = self._check_X_y(X, y)
# during GridSearch, which only assumes score(X, y) interface.
if y is None:
test = X
if isinstance(test, numpy.ndarray): # TODO: reivew
print('score_core numpy.ndarray received...')
test = chainer.datasets.TupleDataset(test)
else:
test = chainer.datasets.TupleDataset(X, y)
# For Classifier
# `accuracy` is calculated as score, using `forward_batch`
# For regressor
# `loss` is calculated as score, using `forward_batch`
self.forward_batch(test, batchsize=batchsize, retain_inputs=False, calc_score=True)
return self.total_score
评论列表
文章目录