ja_lstm_parser.py 文件源码

python
阅读 26 收藏 0 点赞 0 评论 0

项目:depccg 作者: masashi-y 项目源码 文件源码
def __init__(self, model_path, word_dim=None, char_dim=None, nlayers=2,
            hidden_dim=128, relu_dim=64, dep_dim=100, dropout_ratio=0.5):
        self.model_path = model_path
        defs_file = model_path + "/tagger_defs.txt"
        if word_dim is None:
            # use as supertagger
            with open(defs_file) as f:
                defs = json.load(f)
            self.dep_dim    = defs["dep_dim"]
            self.word_dim   = defs["word_dim"]
            self.char_dim   = defs["char_dim"]
            self.hidden_dim = defs["hidden_dim"]
            self.relu_dim   = defs["relu_dim"]
            self.nlayers    = defs["nlayers"]
            self.train = False
            self.extractor = FeatureExtractor(model_path)
        else:
            # training
            self.dep_dim = dep_dim
            self.word_dim = word_dim
            self.char_dim = char_dim
            self.hidden_dim = hidden_dim
            self.relu_dim = relu_dim
            self.nlayers = nlayers
            self.train = True
            with open(defs_file, "w") as f:
                json.dump({"model": self.__class__.__name__,
                           "word_dim": self.word_dim, "char_dim": self.char_dim,
                           "hidden_dim": hidden_dim, "relu_dim": relu_dim,
                           "nlayers": nlayers, "dep_dim": dep_dim}, f)

        self.targets = read_model_defs(model_path + "/target.txt")
        self.words = read_model_defs(model_path + "/words.txt")
        self.chars = read_model_defs(model_path + "/chars.txt")
        self.in_dim = self.word_dim + self.char_dim
        self.dropout_ratio = dropout_ratio
        super(JaLSTMParser, self).__init__(
                emb_word=L.EmbedID(len(self.words), self.word_dim),
                emb_char=L.EmbedID(len(self.chars), 50, ignore_label=IGNORE),
                conv_char=L.Convolution2D(1, self.char_dim,
                    (3, 50), stride=1, pad=(1, 0)),
                lstm_f=L.NStepLSTM(nlayers, self.in_dim,
                    self.hidden_dim, self.dropout_ratio),
                lstm_b=L.NStepLSTM(nlayers, self.in_dim,
                    self.hidden_dim, self.dropout_ratio),
                linear_cat1=L.Linear(2 * self.hidden_dim, self.relu_dim),
                linear_cat2=L.Linear(self.relu_dim, len(self.targets)),
                linear_dep=L.Linear(2 * self.hidden_dim, self.dep_dim),
                linear_head=L.Linear(2 * self.hidden_dim, self.dep_dim),
                biaffine=Biaffine(self.dep_dim)
                )
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号