lstm_parser.py 文件源码

python
阅读 21 收藏 0 点赞 0 评论 0

项目:depccg 作者: masashi-y 项目源码 文件源码
def __init__(self, model_path, word_dim=None, afix_dim=None, nlayers=2,
            hidden_dim=128, elu_dim=64, dep_dim=100, dropout_ratio=0.5):
        self.model_path = model_path
        defs_file = model_path + "/tagger_defs.txt"
        if word_dim is None:
            self.train = False
            Param.load(self, defs_file)
            self.extractor = FeatureExtractor(model_path)
        else:
            # training
            self.train = True
            p = Param(self)
            p.dep_dim = dep_dim
            p.word_dim = word_dim
            p.afix_dim = afix_dim
            p.hidden_dim = hidden_dim
            p.elu_dim = elu_dim
            p.nlayers = nlayers
            p.n_words = len(read_model_defs(model_path + "/words.txt"))
            p.n_suffixes = len(read_model_defs(model_path + "/suffixes.txt"))
            p.n_prefixes = len(read_model_defs(model_path + "/prefixes.txt"))
            p.targets = read_model_defs(model_path + "/target.txt")
            p.dump(defs_file)

        self.in_dim = self.word_dim + 8 * self.afix_dim
        self.dropout_ratio = dropout_ratio
        super(LSTMParser, self).__init__(
                emb_word=L.EmbedID(self.n_words, self.word_dim),
                emb_suf=L.EmbedID(self.n_suffixes, self.afix_dim, ignore_label=IGNORE),
                emb_prf=L.EmbedID(self.n_prefixes, self.afix_dim, ignore_label=IGNORE),
                lstm_f=L.NStepLSTM(nlayers, self.in_dim,
                    self.hidden_dim, self.dropout_ratio),
                lstm_b=L.NStepLSTM(nlayers, self.in_dim,
                    self.hidden_dim, self.dropout_ratio),
                linear_cat1=L.Linear(2 * self.hidden_dim, self.elu_dim),
                linear_cat2=L.Linear(self.elu_dim, len(self.targets)),
                linear_dep=L.Linear(2 * self.hidden_dim, self.dep_dim),
                linear_head=L.Linear(2 * self.hidden_dim, self.dep_dim),
                biaffine=Biaffine(self.dep_dim)
                )
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号