def PreprocessImage(path, show_img=False,invert_img=False):
img = io.imread(path)
if(invert_img):
img = np.fliplr(img)
short_egde = min(img.shape[:2])
yy = int((img.shape[0] - short_egde) / 2)
xx = int((img.shape[1] - short_egde) / 2)
crop_img = img[yy : yy + short_egde, xx : xx + short_egde]
# resize to 224, 224
resized_img = transform.resize(crop_img, (299, 299))
if show_img:
io.imshow(resized_img)
# convert to numpy.ndarray
sample = np.asarray(resized_img) * 256
# swap axes to make image from (299, 299, 3) to (3, 299, 299)
sample = np.swapaxes(sample, 0, 2)
sample = np.swapaxes(sample, 1, 2)
# sub mean
normed_img = sample - 128
normed_img /= 128.
return np.reshape(normed_img,(1,3,299,299))
Pretraining.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录