def getBatchDataByIdx(self, parBatchIdx):
rndIdx = parBatchIdx
parBatchSize = len(rndIdx)
dataX = np.zeros([parBatchSize] + list(self.shapeImg), dtype=np.float)
dataY = np.zeros([parBatchSize] + list(self.shapeMsk), dtype=np.float)
for ii, tidx in enumerate(rndIdx):
if self.isDataInMemory:
dataX[ii] = self.dataImg[tidx]
dataY[ii] = self.dataMskCls[tidx]
else:
tpathImg = self.arrPathDataImg[tidx]
tpathMsk = self.arrPathDataMsk[tidx]
tdataImg = self.adjustImage(skio.imread(tpathImg))
tdataMsk = skio.imread(tpathMsk)
tdataImg = self.transformImageFromOriginal(tdataImg)
tdataMsk = self.transformImageFromOriginal(tdataMsk)
tdataMskCls = self.convertMskToOneHot(tdataMsk)
dataX[ii] = tdataImg
dataY[ii] = tdataMskCls
if self.isTheanoShape:
tshp = dataY.shape
dataY = dataY.reshape([tshp[0], tshp[1], np.prod(tshp[-2:])]).transpose((0, 2, 1))
# print (tshp)
return (dataX, dataY)
run10_common_onimage.py 文件源码
python
阅读 16
收藏 0
点赞 0
评论 0
评论列表
文章目录