def readDataMasked(pidx):
with open(pidx, 'r') as f:
wdir = os.path.dirname(pidx)
lstpath = f.read().splitlines()
lstpath = [os.path.join(wdir,xx) for xx in lstpath]
numPath = len(lstpath)
dataX = None
dataY = None
for ii,pp in enumerate(lstpath):
img4 = skio.imread(pp)
img = img4[:,:,:3].astype(np.float)
img -= img.mean()
img /= img.std()
msk = (img4[:,:,3]>0).astype(np.float)
msk = np_utils.to_categorical(msk.reshape(-1), 2)
# msk = msk.reshape(-1)
if dataX is None:
dataX = np.zeros([numPath] + list(img.shape))
dataY = np.zeros([numPath] + list(msk.shape))
dataX[ii] = img
dataY[ii] = msk
if (ii%100)==0:
print ('[%d/%d]' % (ii, numPath))
return (dataX, dataY)
run04_model_inference.py 文件源码
python
阅读 19
收藏 0
点赞 0
评论 0
评论列表
文章目录