def test_feature_union():
# basic sanity check for feature union
iris = load_iris()
X = iris.data
X -= X.mean(axis=0)
y = iris.target
svd = TruncatedSVD(n_components=2, random_state=0)
select = SelectKBest(k=1)
fs = FeatureUnion([("svd", svd), ("select", select)])
fs.fit(X, y)
X_transformed = fs.transform(X)
assert_equal(X_transformed.shape, (X.shape[0], 3))
# check if it does the expected thing
assert_array_almost_equal(X_transformed[:, :-1], svd.fit_transform(X))
assert_array_equal(X_transformed[:, -1],
select.fit_transform(X, y).ravel())
# test if it also works for sparse input
# We use a different svd object to control the random_state stream
fs = FeatureUnion([("svd", svd), ("select", select)])
X_sp = sparse.csr_matrix(X)
X_sp_transformed = fs.fit_transform(X_sp, y)
assert_array_almost_equal(X_transformed, X_sp_transformed.toarray())
# test setting parameters
fs.set_params(select__k=2)
assert_equal(fs.fit_transform(X, y).shape, (X.shape[0], 4))
# test it works with transformers missing fit_transform
fs = FeatureUnion([("mock", TransfT()), ("svd", svd), ("select", select)])
X_transformed = fs.fit_transform(X, y)
assert_equal(X_transformed.shape, (X.shape[0], 8))
评论列表
文章目录