def __init__(self, path, goldset, base_model, features=None, types=None):
self.ensemble_pipeline = Pipeline([
('clf', ensemble.RandomForestClassifier(criterion="gini", n_estimators=1000))
])
self.base_model = base_model
self.path = path
self.predicted = []
self.res = None
self.ids, self.data, self.labels = [], [], []
self.goldset = goldset
if types: # features is a list of classifier names
self.types = types
else:
self.types = []
self.feature_names = []
for t in self.types:
self.feature_names.append(t)
self.feature_names.append(t + "_ssm")
for f in features:
self.feature_names.append(f)
评论列表
文章目录