def _execute(self, sources, alignment_stream, interval):
time_interval = TimeInterval(MIN_DATE, interval.end)
param_doc = sources[0].window(time_interval, force_calculation=True).last()
if param_doc is None:
logging.debug("No model found in {} for time interval {}".format(sources[0].stream_id, time_interval))
return
steps = deserialise_json_pipeline({
'vectorisation': DictVectorizer(sparse=False),
'fill_missing': FillZeros(),
'classifier': LinearDiscriminantAnalysis(),
'label_encoder': LabelEncoder()
}, param_doc.value)
clf = Pipeline([(kk, steps[kk]) for kk in ('vectorisation', 'fill_missing', 'classifier')])
locations = steps['label_encoder'].classes_
data = sources[1].window(interval, force_calculation=True)
for tt, dd in data:
yield StreamInstance(tt, {locations[ii]: pp for ii, pp in enumerate(clf.predict_proba(dd)[0])})
2016-11-07_v0.0.1.py 文件源码
python
阅读 29
收藏 0
点赞 0
评论 0
评论列表
文章目录