def plot_all_policy_at0(path_experiment, color, num_iter=100, fig_dir=None):
mean_at_0 = []
var_at_0 = []
for itr in range(num_iter):
data_bimodal_1d = joblib.load(os.path.join(path_experiment, 'itr_{}.pkl'.format(itr)))
poli = data_bimodal_1d['policy']
action_at_0 = poli.get_action(np.array((0,)))
mean_at_0.append(action_at_0[1]['mean'])
var_at_0.append(action_at_0[1]['log_std'])
itr = list(range(num_iter))
plt.plot(itr, mean_at_0, color=color, label='mean at 0')
plt.plot(itr, var_at_0, color=color * 0.7, label='logstd at 0')
plt.title('How the policy variates accross iterations')
plt.xlabel('iteration')
plt.ylabel('mean and variance at 0')
plt.legend(loc=3)
if fig_dir:
plt.savefig(os.path.join(fig_dir, 'policy_at_0'))
else:
print("No directory for saving plots")
## plot for all the experiments
评论列表
文章目录