def rais(self, data, step = 1000, M = 100, parallel = False, seed = None):
num_data = data.shape[0]
result = 0
if not parallel:
p = []
for i in range(M):
logw = self.mcmc_r(data, step, num_data)
p.append(logw)
p = np.array(p)
logmeanp = logmeanexp(p, axis = 0)
else:
num_cores = multiprocessing.cpu_count()
p = Parallel(n_jobs=num_cores)(delayed(self.mcmc_r)(v = data, step = step, num_data = num_data, seed = seed) for i in range(M))
p = np.array(p)
logmeanp = logmeanexp(p, axis = 0)
result = logmeanp.mean()
return result
rais.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录