def degreetocart(data_f1):
global df2
df2 = data_f1.copy()
print "phase 1"
df2['X'] = np.nan
df2['Y'] = np.nan
df2['Z'] = np.nan
df2 = df2.astype(float)
print "phase 2"
num_cores = multiprocessing.cpu_count()
results_x = Parallel(n_jobs=num_cores)(delayed(xloop)(i) for i in xrange(0,len(df2)))
print "phase 3"
#print results_x
#print results_x
#print " this is "
#print results_x[0]
results_y = Parallel(n_jobs=num_cores)(delayed(yloop)(i) for i in xrange(0,len(df2)))
print "phase 4"
results_z = Parallel(n_jobs=num_cores)(delayed(zloop)(i) for i in xrange(0,len(df2)))
print "phase 5"
#print results_y
#Parallel(n_jobs=num_cores)(delayed(adjloop)(i) for i in xrange(0,len(df2)))
for i in xrange(0,len(df2)):
print i
df2['X'][i] = results_x[i]
df2['Y'][i] = results_y[i]
df2['Z'][i] = results_z[i]
评论列表
文章目录