def test_integrated_plot_numpy_named_arrays(self):
model = naive_bayes.MultinomialNB()
X = np.array([
(1.1, 9.52, 1.23, 0.86, 7.89, 0.13),
(3.4, 2.84, 8.65, 0.45, 7.43, 0.16),
(1.2, 3.22, 6.56, 0.24, 3.45, 0.17),
(3.8, 6.18, 2.45, 0.28, 2.53, 0.13),
(5.1, 9.12, 1.06, 0.19, 1.43, 0.13),
(4.4, 8.84, 4.97, 0.98, 1.35, 0.13),
(3.2, 3.22, 5.03, 0.68, 3.53, 0.32),
(7.8, 2.18, 6.87, 0.35, 3.25, 0.38),
], dtype=[('a','<f8'), ('b','<f8'),
('c','<f8'), ('d','<f8'),
('e','<f8'), ('f','<f8')]
)
y = np.array([1, 1, 0, 1, 0, 0, 1, 0])
visualizer = DecisionBoundariesVisualizer(model, features=['a', 'f'])
visualizer.fit_draw_poof(X, y=y)
self.assertEquals(visualizer.features_, ['a', 'f'])
self.assert_images_similar(visualizer)
评论列表
文章目录