def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=None,
zmin=1):
"""Print and plot the confusion matrix for the intent classification.
Normalization can be applied by setting `normalize=True`."""
import numpy as np
zmax = cm.max()
plt.clf()
plt.imshow(cm, interpolation='nearest', cmap=cmap if cmap else plt.cm.Blues,
aspect='auto', norm=LogNorm(vmin=zmin, vmax=zmax))
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=90)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
logger.info("Normalized confusion matrix: \n{}".format(cm))
else:
logger.info("Confusion matrix, without normalization: \n{}".format(cm))
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
评论列表
文章目录