def build_simple_autoencoder(input_dim=784, encoding_dim=32, l1_penalty=0.):
# this is the size of our encoded representations
# 32 floats -> compression of factor 24.5, assuming the input is 784 floats
# this is our input placeholder
input_img = Input(shape=(input_dim,))
# "encoded" is the encoded representation of the input
encoded = Dense(encoding_dim, activation='relu', activity_regularizer=regularizers.l1(l1_penalty))(input_img)
# "decoded" is the lossy reconstruction of the input
decoded = Dense(input_dim, activation='sigmoid')(encoded)
# this model maps an input to its reconstruction
autoencoder = Model(input_img, decoded)
# this model maps an input to its encoded representation
encoder = Model(input_img, encoded)
# create a placeholder for an encoded (32-dimensional) input
encoded_input = Input(shape=(encoding_dim,))
# retrieve the last layer of the autoencoder model
decoder_layer = autoencoder.layers[-1]
# create the decoder model
decoder = Model(encoded_input, decoder_layer(encoded_input))
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
return encoder, decoder, autoencoder
评论列表
文章目录