def test_keras_export(self):
# Test 1
img_input = Input((224, 224, 3))
model = Conv2D(64, (3, 3), padding='same', dilation_rate=1, use_bias=True,
kernel_regularizer=regularizers.l1(), bias_regularizer='l1',
activity_regularizer='l1', kernel_constraint='max_norm',
bias_constraint='max_norm')(img_input)
model = BatchNormalization(center=True, scale=True, beta_regularizer=regularizers.l2(0.01),
gamma_regularizer=regularizers.l2(0.01),
beta_constraint='max_norm', gamma_constraint='max_norm',)(model)
model = Model(img_input, model)
json_string = Model.to_json(model)
with open(os.path.join(settings.BASE_DIR, 'media', 'test.json'), 'w') as out:
json.dump(json.loads(json_string), out, indent=4)
sample_file = open(os.path.join(settings.BASE_DIR, 'media', 'test.json'), 'r')
response = self.client.post(reverse('keras-import'), {'file': sample_file})
response = json.loads(response.content)
response = self.client.post(reverse('keras-export'), {'net': json.dumps(response['net']),
'net_name': ''})
response = json.loads(response.content)
self.assertEqual(response['result'], 'success')
# Test 2
tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'ide',
'caffe_export_test.json'), 'r')
response = json.load(tests)
tests.close()
net = yaml.safe_load(json.dumps(response['net']))
net = {'l0': net['HDF5Data']}
response = self.client.post(reverse('keras-export'), {'net': json.dumps(net),
'net_name': ''})
response = json.loads(response.content)
self.assertEqual(response['result'], 'error')
# ********** Import json tests **********
评论列表
文章目录