def prep_model(inputs, N, s0pad, s1pad, c):
outputs = B.rnn_input(inputs, N, s0pad,
dropout=c['dropout'], dropoutfix_inp=c['dropoutfix_inp'], dropoutfix_rec=c['dropoutfix_rec'],
sdim=c['sdim'],
rnnbidi=c['rnnbidi'], rnn=c['rnn'], rnnact=c['rnnact'], rnninit=c['rnninit'],
rnnbidi_mode=c['rnnbidi_mode'], rnnlevels=c['rnnlevels'])
# Projection
if c['project']:
proj = Dense(int(N*c['pdim']), activation=c['pact'], kernel_regularizer=l2(c['l2reg']), name='proj')
e0p = proj(outputs[0])
e1p = proj(outputs[1])
N = N*c['pdim']
return [e0p, e1p], N
else:
return [outputs[0], outputs[1]], N
#input_dim=int(N*c['sdim'])
评论列表
文章目录