def gen_Model(num_units, actfn='linear', reg_coeff=0.0, last_act='softmax'):
''' Generate a neural network model of approporiate architecture
Args:
num_units: architecture of network in the format [n1, n2, ... , nL]
actfn: activation function for hidden layers ('relu'/'sigmoid'/'linear'/'softmax')
reg_coeff: L2-regularization coefficient
last_act: activation function for final layer ('relu'/'sigmoid'/'linear'/'softmax')
Output:
model: Keras sequential model with appropriate fully-connected architecture
'''
model = Sequential()
for i in range(1, len(num_units)):
if i == 1 and i < len(num_units) - 1:
model.add(Dense(input_dim=num_units[0], output_dim=num_units[i], activation=actfn,
W_regularizer=Reg.l2(l=reg_coeff), init='glorot_normal'))
elif i == 1 and i == len(num_units) - 1:
model.add(Dense(input_dim=num_units[0], output_dim=num_units[i], activation=last_act,
W_regularizer=Reg.l2(l=reg_coeff), init='glorot_normal'))
elif i < len(num_units) - 1:
model.add(Dense(output_dim=num_units[i], activation=actfn,
W_regularizer=Reg.l2(l=reg_coeff), init='glorot_normal'))
elif i == len(num_units) - 1:
model.add(Dense(output_dim=num_units[i], activation=last_act,
W_regularizer=Reg.l2(l=reg_coeff), init='glorot_normal'))
return model
deeplearning.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录