def bottleneck(filters, init_strides=(1, 1), is_first_block_of_first_layer=False):
"""Bottleneck architecture for > 34 layer resnet.
Follows improved proposed scheme in http://arxiv.org/pdf/1603.05027v2.pdf
Returns:
A final conv layer of filters * 4
"""
def f(input):
if is_first_block_of_first_layer:
# don't repeat bn->relu since we just did bn->relu->maxpool
conv_1_1 = Conv2D(filters=filters, kernel_size=(1, 1),
strides=init_strides,
padding="same",
kernel_initializer="he_normal",
kernel_regularizer=l2(1e-4))(input)
else:
conv_1_1 = _bn_relu_conv(filters=filters, kernel_size=(1, 1),
strides=init_strides)(input)
conv_3_3 = _bn_relu_conv(filters=filters, kernel_size=(3, 3))(conv_1_1)
residual = _bn_relu_conv(filters=filters * 4, kernel_size=(1, 1))(conv_3_3)
return _shortcut(input, residual)
return f
评论列表
文章目录