def test_DecisionTreeRegressor_splitter(*data):
'''
test the performance with different splitters
:param data: train_data, test_data, train_value, test_value
:return: None
'''
X_train,X_test,y_train,y_test=data
splitters=['best','random']
for splitter in splitters:
regr = DecisionTreeRegressor(splitter=splitter)
regr.fit(X_train, y_train)
print("Splitter {0}".format(splitter))
print("Training score:{0}".format(regr.score(X_train,y_train)))
print("Testing score:{0}".format(regr.score(X_test,y_test)))
评论列表
文章目录