2.2 Decision Tree- Regression.py 文件源码

python
阅读 20 收藏 0 点赞 0 评论 0

项目:ML-note 作者: JasonK93 项目源码 文件源码
def test_DecisionTreeRegressor(*data):
    '''
    test DT regression
    :param data: train_data, test_data, train_value, test_value
    :return: None
    '''
    X_train,X_test,y_train,y_test=data
    regr = DecisionTreeRegressor()
    regr.fit(X_train, y_train)
    print("Training score:{0}".format(regr.score(X_train,y_train)))
    print("Testing score:{0}".format(regr.score(X_test,y_test)))
    ##graph
    fig=plt.figure()
    ax=fig.add_subplot(1,1,1)
    X = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
    Y = regr.predict(X)
    ax.scatter(X_train, y_train, label="train sample",c='g')
    ax.scatter(X_test, y_test, label="test sample",c='r')
    ax.plot(X, Y, label="predict_value", linewidth=2,alpha=0.5)
    ax.set_xlabel("data")
    ax.set_ylabel("target")
    ax.set_title("Decision Tree Regression")
    ax.legend(framealpha=0.5)
    plt.show()
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号