def test_DecisionTreeRegressor(*data):
'''
test DT regression
:param data: train_data, test_data, train_value, test_value
:return: None
'''
X_train,X_test,y_train,y_test=data
regr = DecisionTreeRegressor()
regr.fit(X_train, y_train)
print("Training score:{0}".format(regr.score(X_train,y_train)))
print("Testing score:{0}".format(regr.score(X_test,y_test)))
##graph
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
X = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
Y = regr.predict(X)
ax.scatter(X_train, y_train, label="train sample",c='g')
ax.scatter(X_test, y_test, label="test sample",c='r')
ax.plot(X, Y, label="predict_value", linewidth=2,alpha=0.5)
ax.set_xlabel("data")
ax.set_ylabel("target")
ax.set_title("Decision Tree Regression")
ax.legend(framealpha=0.5)
plt.show()
评论列表
文章目录