def load(file_path):
with open(file_path + '.params', 'r') as params_file:
params = json.load(params_file)
weak_learners = list()
for wl_id in range(params['n_round']):
# wl = DecisionTreeRegressor(max_depth=params['max_depth'],
# max_features=params['max_features'],
# min_samples_leaf=params['min_samples_leaf'])
wl = joblib.load(file_path + '.wl%d' % wl_id)
weak_learners.append(wl)
rankgbm = RankGBM(params['vote_k'],
n_round=params['n_round'],
max_depth=params['max_depth'],
max_features=params['max_features'],
min_samples_leaf=params['min_samples_leaf'],
learn_rate=params['learn_rate'])
rankgbm.weak_learners = weak_learners
return rankgbm
rankgbm.py 文件源码
python
阅读 18
收藏 0
点赞 0
评论 0
评论列表
文章目录