def parseTerms():
"""
expop :: '^'
multop :: '*' | '/'
addop :: '+' | '-'
integer :: ['+' | '-'] '0'..'9'+
atom :: PI | E | real | fn '(' expr ')' | '(' expr ')'
factor :: atom [ expop factor ]*
term :: factor [ multop factor ]*
expr :: term [ addop term ]*
"""
global terms
if not terms:
point = Literal( "." )
e = CaselessLiteral( "E" )
fnumber = Combine( Word( "+-"+nums, nums ) +
Optional( point + Optional( Word( nums ) ) ) +
Optional( e + Word( "+-"+nums, nums ) ) )
ident = Word(alphas, alphas+nums+"_$")
plus = Literal( "+" )
minus = Literal( "-" )
mult = Literal( "*" )
div = Literal( "/" )
lpar = Literal( "(" ).suppress()
rpar = Literal( ")" ).suppress()
addop = plus | minus
multop = mult | div
expop = Literal( "^" )
pi = CaselessLiteral( "PI" )
expr = Forward()
atom = (Optional("-") + ( pi | e | fnumber | ident + lpar + expr + rpar ).setParseAction( pushFirst ) | ( lpar + expr.suppress() + rpar )).setParseAction(pushUMinus)
# by defining exponentiation as "atom [ ^ factor ]..." instead of "atom [ ^ atom ]...", we get right-to-left exponents, instead of left-to-righ
# that is, 2^3^2 = 2^(3^2), not (2^3)^2.
factor = Forward()
factor << atom + ZeroOrMore( ( expop + factor ).setParseAction( pushFirst ) )
term = factor + ZeroOrMore( ( multop + factor ).setParseAction( pushFirst ) )
expr << term + ZeroOrMore( ( addop + term ).setParseAction( pushFirst ) )
terms = expr
return terms
评论列表
文章目录