metric.py 文件源码

python
阅读 24 收藏 0 点赞 0 评论 0

项目:char-cnn-pytorch 作者: srviest 项目源码 文件源码
def print_f_score(output, target):
    """returns: 
        p<recision>, 
        r<ecall>, 
        f<-score>, 
        {"TP", "p", "TP_plus_FP"} """
    p, r, TP, TP_plus_FN, TP_plus_FP = precision_recall(output, target)
    f = F_score(p, r)

    # cprint("Label: " + c(("  " + str(10))[-5:], 'red') +
    #            "\tPrec: " + c("  {:.1f}".format(0.335448 * 100)[-5:], 'green') + '%' +
    #            " ({:d}/{:d})".format(1025, 1254).ljust(14) +
    #            "Recall: " + c("  {:.1f}".format(0.964 * 100)[-5:], 'green') + "%" +
    #            " ({:d}/{:d})".format(15, 154).ljust(14) +
    #            "F-Score: " +  (c("  {:.1f}".format(0.5 * 100)[-5:], "green") + "%")
    #            )

    for label in f.keys():
        cprint("Label: " + c(("  " + str(label))[-5:], 'red') +
               "\tPrec: " + c("  {:.1f}".format(p[label] * 100)[-5:], 'green') + '%' +
               " ({:d}/{:d})".format((TP[label] if label in TP else 0), TP_plus_FP[label]).ljust(14) +
               "Recall: " + c("  {:.1f}".format((r[label] if label in r else 0) * 100)[-5:], 'green') + "%" +
               " ({:d}/{:d})".format((TP[label] if label in TP else 0), TP_plus_FN[label]).ljust(14) +
               "F-Score: " + ("  N/A" if f[label] is None else (c("  {:.1f}".format(f[label] * 100)[-5:], "green") + "%"))
               )
    # return p, r, f, _
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号