def precision_keras(y_true, y_pred):
#convert probas to 0,1
y_pred_ones = K.zeros_like(y_true)
y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1
#where y_ture=1 and y_pred=1 -> true positive
y_true_pred = K.sum(y_true*y_pred_ones, axis=0)
#for each class: how many where classified as said class
pred_cnt = K.sum(y_pred_ones, axis=0)
#precision for each class
precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred/pred_cnt)
#return average f1 score over all classes
return K.mean(precision)
评论列表
文章目录