def get_constants(self, x):
constants = []
if 0 < self.dropout_U < 1:
ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
ones = K.tile(ones, (1, self.output_dim))
B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones)
constants.append(B_U)
else:
constants.append(K.cast_to_floatx(1.))
if self.consume_less == 'cpu' and 0 < self.dropout_W < 1:
input_shape = self.input_spec[0].shape
input_dim = input_shape[-1]
ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
ones = K.tile(ones, (1, int(input_dim)))
B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones)
constants.append(B_W)
else:
constants.append(K.cast_to_floatx(1.))
return constants
separable_RNN.py 文件源码
python
阅读 25
收藏 0
点赞 0
评论 0
评论列表
文章目录