def on_epoch_end(self, epoch, logs={}):
current = logs.get(self.monitor)
if current is None:
warnings.warn('Early stopping requires %s available!' % (self.monitor), RuntimeWarning)
if self.monitor_op(current, self.best):
self.best = current
self.wait = 0
else:
if (self.wait == self.patience - 1) and self.anneal:
print 'Halving Learning Rate...'
K.set_value(self.model.optimizer.lr, K.get_value(self.model.optimizer.lr)/2)
elif self.wait >= self.patience:
print('Epoch %d: early stopping' % (epoch))
self.model.stop_training = True
self.wait += 1
评论列表
文章目录