def preprocess_input(self, inputs, training=None):
#if self.consume_less == 'cpu':
# input_shape = K.int_shape(x)
# input_dim = input_shape[2]
# timesteps = input_shape[1]
# x_z = time_distributed_dense(x, self.W_z, self.b_z, self.dropout_W,
# input_dim, self.units, timesteps)
# x_r = time_distributed_dense(x, self.W_r, self.b_r, self.dropout_W,
# input_dim, self.units, timesteps)
# x_h = time_distributed_dense(x, self.W_h, self.b_h, self.dropout_W,
# input_dim, self.units, timesteps)
# return K.concatenate([x_z, x_r, x_h], axis=2)
#else:
# return x
self.ha = K.dot(self.h, self.Ua) #time_distributed_dense(self.h, self.Ua)
return inputs
rnnlayer.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录