def test_sub_pixel_upscaling():
num_samples = 2
num_row = 16
num_col = 16
input_dtype = K.floatx()
for scale_factor in [2, 3, 4]:
input_data = np.random.random((num_samples, 4 * (scale_factor ** 2), num_row, num_col))
input_data = input_data.astype(input_dtype)
if K.image_data_format() == 'channels_last':
input_data = input_data.transpose((0, 2, 3, 1))
input_tensor = K.variable(input_data)
expected_output = K.eval(KC.depth_to_space(input_tensor,
scale=scale_factor))
layer_test(convolutional.SubPixelUpscaling,
kwargs={'scale_factor': scale_factor},
input_data=input_data,
expected_output=expected_output,
expected_output_dtype=K.floatx())
评论列表
文章目录