def get_avg_img( data_series, img_samp_index=None, sampling = 100, plot_ = False , save=False, *argv,**kwargs):
'''Get average imagef from a data_series by every sampling number to save time'''
if img_samp_index is None:
avg_img = np.average(data_series[:: sampling], axis=0)
else:
avg_img = np.zeros_like( data_series[0] )
n=0
for i in img_samp_index:
avg_img += data_series[i]
n +=1
avg_img = np.array( avg_img) / n
if plot_:
fig, ax = plt.subplots()
uid = 'uid'
if 'uid' in kwargs.keys():
uid = kwargs['uid']
im = ax.imshow(avg_img , cmap='viridis',origin='lower',
norm= LogNorm(vmin=0.001, vmax=1e2))
#ax.set_title("Masked Averaged Image")
ax.set_title('uid= %s--Masked Averaged Image'%uid)
fig.colorbar(im)
if save:
#dt =datetime.now()
#CurTime = '%s%02d%02d-%02d%02d-' % (dt.year, dt.month, dt.day,dt.hour,dt.minute)
path = kwargs['path']
if 'uid' in kwargs:
uid = kwargs['uid']
else:
uid = 'uid'
#fp = path + "uid= %s--Waterfall-"%uid + CurTime + '.png'
fp = path + "uid=%s--avg-img-"%uid + '.png'
fig.savefig( fp, dpi=fig.dpi)
#plt.show()
return avg_img
评论列表
文章目录