def vis_square(data, padsize=1, padval=0):
data -= data.min()
data /= data.max()
# Force the number of filters to be square
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
#UNCOMMENT_THIS data = np.pad(data, padding, mode='reflect', constant_values=(padval, padval))
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
# Tile the filters into an image
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
#IF you want to use Show Image for static images, comment out thr if and return statements
if data.ndim == 3:
data = data[:, :, ::-1]
return data
#showimage(data)
# Plot the last image and conv1 layer's weights and responses
caffe_functions.py 文件源码
python
阅读 26
收藏 0
点赞 0
评论 0
评论列表
文章目录