def _get_statistics(self,data=[]):
n, tot = self._fixedr_distns[0]._get_statistics(data)
if n > 0:
data = flattendata(data)
alphas_n, betas_n = self.alphas_0 + tot, self.betas_0 + self.r_support*n
log_marg_likelihoods = \
special.betaln(alphas_n, betas_n) \
- special.betaln(self.alphas_0, self.betas_0) \
+ (special.gammaln(data[:,na]+self.r_support)
- special.gammaln(data[:,na]+1) \
- special.gammaln(self.r_support)).sum(0)
else:
log_marg_likelihoods = np.zeros_like(self.r_support)
return log_marg_likelihoods
评论列表
文章目录