def shift_polynomial(coef, d):
# given polynomial sum_k a_k x^k -> sum_k a_k (x+d)^k
coef2 = np.zeros(5, dtype="float64")
for i in range(5):
for j in range(i, 5):
coef2[i] = coef2[i] + coef[j] * (d**(j - i)) * sp.binom(j, i)
return coef2
# def shift_graph_2(graph1, graph2, d):
# # numpy matrix implementation of shift_graph
# A = np.zeros((5,5),dtype="float64")
# for i in range(5):
# for j in range(i,5):
# A[j,i] = (d**(j-i)) * sp.binom(j,i)
# graph2[:,3:] = graph2[:,3:].dot(A)
# return graph2
heterogeneous_solver.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录