def _E_logL(self, k=None):
'''
Returns
-------
E_logL : 1D array, size D
'''
if k == 'all':
# retVec : K x D
retVec = LOGTWO - np.log(self.Post.beta.copy()) # no strided!
retVec += digamma(0.5 * self.Post.nu)[:, np.newaxis]
return retVec
elif k is None:
nu = self.Prior.nu
beta = self.Prior.beta
else:
nu = self.Post.nu[k]
beta = self.Post.beta[k]
return LOGTWO - np.log(beta) + digamma(0.5 * nu)
评论列表
文章目录