def main():
parser = argparse.ArgumentParser()
parser.add_argument('tags', nargs='+')
parser.add_argument('--dest-tag', default='stacked',
help='Tag for generated pdict (default: "stacked")')
parser.add_argument('--fold', default='test')
args = parser.parse_args()
metavec = load_metavectors(args.fold)
#clf = train.load_model()
clf = joblib.load('model.pkl')
with time_me('Vectorized fold {}'.format(args.fold)):
# TODO: this fn is not a thing?
X, y = train.vectorize_fold(args.fold, args.tags, metavec)
if hasattr(clf, 'predict_proba'):
probs = clf.predict_proba(X)
# returns an array of shape (n, 2), where each len-2 subarray
# has the probability of the negative and positive classes. which is silly.
probs = probs[:,1]
else:
scores = clf.decision_function(X)
probs = expit(scores)
pdict = pdictify(probs, metavec)
common.save_pdict_for_tag(args.dest_tag, pdict, args.fold)
precompute_probs.py 文件源码
python
阅读 24
收藏 0
点赞 0
评论 0
评论列表
文章目录