def __init__(self, loc=0.0, scale=1.0, df=8.0, gamma=1.0, transform=None, **kwargs):
"""
Parameters
----------
loc : float
Location parameter for the Skew t distribution
scale : float
Scale parameter for the Skew t distribution
df : float
Degrees of freedom parameter for the Skew t distribution
gamma : float
Skewness parameter (1.0 is skewed; under 1.0, -ve skewed; over 1.0, +ve skewed)
transform : str
Whether to apply a transformation to the location variable - e.g. 'exp' or 'logit'
"""
super(Skewt, self).__init__(transform)
self.loc0 = loc
self.scale0 = scale
self.df0 = df
self.gamma0 = gamma
self.covariance_prior = False
self.gradient_only = kwargs.get('gradient_only', False) # used for GAS t models
if self.gradient_only is True:
self.score_function = self.first_order_score
else:
self.score_function = self.second_order_score
评论列表
文章目录