def fetch(self):
# cut the text in semi-redundant sequences of maxlen characters
#text=self.text
text=self.next_text()
chars=self.chars
maxlen=self.maxlen
step=self.step
maxlen = 20
step = 3
sentences = []
next_chars = []
for i in range(0, len(text) - maxlen, step):
sentences.append(text[i: i + maxlen])
next_chars.append(text[i + maxlen])
print('nb sequences:', len(sentences))
print('Vectorization...')
X = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)
y = np.zeros((len(sentences), len(chars)), dtype=np.bool)
for i, sentence in enumerate(sentences):
for t, char in enumerate(sentence):
X[i, t, self.char_indices[char]] = 1
y[i, self.char_indices[next_chars[i]]] = 1
return text,X,y
评论列表
文章目录