def test_zero_padding_3d():
nb_samples = 2
stack_size = 2
input_len_dim1 = 4
input_len_dim2 = 5
input_len_dim3 = 3
input = np.ones((nb_samples,
input_len_dim1, input_len_dim2, input_len_dim3,
stack_size))
# basic test
layer_test(convolutional.ZeroPadding3D,
kwargs={'padding': (2, 2, 2)},
input_shape=input.shape)
# correctness test
layer = convolutional.ZeroPadding3D(padding=(2, 2, 2))
layer.build(input.shape)
output = layer(K.variable(input))
np_output = K.eval(output)
for offset in [0, 1, -1, -2]:
assert_allclose(np_output[:, offset, :, :, :], 0.)
assert_allclose(np_output[:, :, offset, :, :], 0.)
assert_allclose(np_output[:, :, :, offset, :], 0.)
assert_allclose(np_output[:, 2:-2, 2:-2, 2:-2, :], 1.)
layer.get_config()
评论列表
文章目录