def __call__(self):
model = Sequential()
model.add(Dense(1024, kernel_initializer=self.initializer, \
kernel_regularizer=self.regularizer, input_shape=(self.z_dim,)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dense(7 * 7 * 128, kernel_initializer=self.initializer, \
kernel_regularizer=self.regularizer))
model.add(Reshape((7, 7, 128)))
model.add(BatchNormalization())
model.add(Activation('relu'))
# Convolution transpose layer
model.add(Conv2DTranspose(64, kernel_size=(4, 4), strides=(2, 2), padding='same',\
kernel_initializer=self.initializer, kernel_regularizer=self.regularizer))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2DTranspose(1, kernel_size=(4, 4), strides=(2, 2), padding='same',\
kernel_initializer=self.initializer, kernel_regularizer=self.regularizer))
model.add(Activation('sigmoid'))
model.add(Reshape((784,)))
return model
评论列表
文章目录