def test_deconvolution_2d():
nb_samples = 2
nb_filter = 2
stack_size = 3
nb_row = 10
nb_col = 6
for batch_size in [None, nb_samples]:
for border_mode in _convolution_border_modes:
for subsample in [(1, 1), (2, 2)]:
if border_mode == 'same' and subsample != (1, 1):
continue
print batch_size, border_mode, subsample
rows = conv_input_length(nb_row, 3, border_mode, subsample[0])
cols = conv_input_length(nb_col, 3, border_mode, subsample[1])
layer_test(convolutional.Deconvolution2D,
kwargs={'nb_filter': nb_filter,
'nb_row': 3,
'nb_col': 3,
'output_shape': (batch_size, nb_filter, rows, cols),
'border_mode': border_mode,
'subsample': subsample,
'dim_ordering': 'th'},
input_shape=(nb_samples, stack_size, nb_row, nb_col),
fixed_batch_size=True)
layer_test(convolutional.Deconvolution2D,
kwargs={'nb_filter': nb_filter,
'nb_row': 3,
'nb_col': 3,
'output_shape': (batch_size, nb_filter, rows, cols),
'border_mode': border_mode,
'dim_ordering': 'th',
'W_regularizer': 'l2',
'b_regularizer': 'l2',
'activity_regularizer': 'activity_l2',
'subsample': subsample},
input_shape=(nb_samples, stack_size, nb_row, nb_col),
fixed_batch_size=True)
评论列表
文章目录