def build_generator(self):
model = Sequential()
# Encoder
model.add(Conv2D(64, kernel_size=4, strides=2, input_shape=self.img_shape, padding="same"))
model.add(Activation('relu'))
model.add(Conv2D(128, kernel_size=4, strides=2, padding="same"))
model.add(Activation('relu'))
model.add(Conv2D(256, kernel_size=4, strides=2, padding="same"))
model.add(Activation('relu'))
# Decoder
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=4, padding="same"))
model.add(Activation('relu'))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=4, padding="same"))
model.add(Activation('relu'))
model.add(UpSampling2D())
model.add(Conv2D(self.channels, kernel_size=4, padding="same"))
model.add(Activation('tanh'))
model.summary()
masked_img = Input(shape=self.img_shape)
img = model(masked_img)
return Model(masked_img, img)
评论列表
文章目录