def test_maxpooling_1d(self):
nb_samples = 9
nb_steps = 7
input_dim = 10
input = np.ones((nb_samples, nb_steps, input_dim))
for ignore_border in [True, False]:
for stride in [1, 2]:
layer = convolutional.MaxPooling1D(stride=stride, ignore_border=ignore_border)
layer.input = theano.shared(value=input)
for train in [True, False]:
layer.get_output(train).eval()
config = layer.get_config()
评论列表
文章目录