def _build_network(self, vocab_size, maxlen, embedding_dimension=256, hidden_units=256, trainable=False):
print('Build model...')
model = Sequential()
model.add(
Embedding(vocab_size, embedding_dimension, input_length=maxlen, embeddings_initializer='glorot_normal'))
model.add(Convolution1D(hidden_units, 3, kernel_initializer='he_normal', padding='valid', activation='sigmoid',
input_shape=(1, maxlen)))
# model.add(MaxPooling1D(pool_size=3))
model.add(Convolution1D(hidden_units, 3, kernel_initializer='he_normal', padding='valid', activation='sigmoid',
input_shape=(1, maxlen - 2)))
# model.add(MaxPooling1D(pool_size=3))
# model.add(Dropout(0.25))
model.add(LSTM(hidden_units, kernel_initializer='he_normal', activation='sigmoid', dropout=0.5,
return_sequences=True))
model.add(LSTM(hidden_units, kernel_initializer='he_normal', activation='sigmoid', dropout=0.5))
model.add(Dense(hidden_units, kernel_initializer='he_normal', activation='sigmoid'))
model.add(Dense(2))
model.add(Activation('softmax'))
adam = Adam(lr=0.0001)
model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])
print('No of parameter:', model.count_params())
print(model.summary())
return model
sarcasm_detection_model_CNN_LSTM_DNN.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录