def build_small_chrom_label(args):
model = Sequential()
model.add(Convolution1D(input_dim=len(args.inputs),
input_length=args.window_size,
nb_filter=40,
filter_length=16,
border_mode='valid',
activation="relu",
init='normal'))
model.add(MaxPooling1D(pool_length=3, stride=3))
model.add(Convolution1D(nb_filter=64, filter_length=16, activation="relu", init='normal', border_mode='valid'))
model.add(Dropout(0.2))
model.add(MaxPooling1D(pool_length=3, stride=3))
model.add(Flatten())
model.add(Dense(output_dim=32, init='normal'))
model.add(Activation('relu'))
model.add( Dense(output_dim=len(args.labels), init='normal') )
model.add( Activation('softmax'))
sgd = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=0.5)
adamo = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=1.)
classes = args.labels.keys()
my_metrics = [metrics.categorical_accuracy, precision, recall ]
model.compile(loss='categorical_crossentropy', optimizer=adamo, metrics=my_metrics)
print('model summary:\n', model.summary())
return model
chrom_hmm_cnn.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录