def test_convolution_1d():
nb_samples = 2
nb_steps = 8
input_dim = 2
filter_length = 3
nb_filter = 3
for border_mode in _convolution_border_modes:
for subsample_length in [1, 2]:
if border_mode == 'same' and subsample_length != 1:
continue
layer_test(convolutional.Convolution1D,
kwargs={'nb_filter': nb_filter,
'filter_length': filter_length,
'border_mode': border_mode,
'subsample_length': subsample_length},
input_shape=(nb_samples, nb_steps, input_dim))
layer_test(convolutional.Convolution1D,
kwargs={'nb_filter': nb_filter,
'filter_length': filter_length,
'border_mode': border_mode,
'W_regularizer': 'l2',
'b_regularizer': 'l2',
'activity_regularizer': 'activity_l2',
'subsample_length': subsample_length},
input_shape=(nb_samples, nb_steps, input_dim))
评论列表
文章目录