def __call__(self):
model = Sequential()
model.add(Reshape((28, 28, 1), input_shape=(784,)))
# Convolution Layer 1
model.add(Conv2D(64, kernel_size=(4, 4), strides=(2, 2), \
kernel_initializer=self.initializer))
model.add(LeakyReLU())
# Convolution Layer 2
model.add(Conv2D(128, kernel_size=(4, 4), strides=(2, 2), \
kernel_initializer=self.initializer))
model.add(LeakyReLU())
# Batch Normalization
model.add(BatchNormalization())
# Flatten the input
model.add(Flatten())
# Dense Layer
model.add(Dense(1024, kernel_initializer=self.initializer))
model.add(LeakyReLU())
# Batch Normalization
model.add(BatchNormalization())
# To the output that has two classes
model.add(Dense(2, activation='softmax'))
return model
评论列表
文章目录