def conv2D_lrn2d(x, nb_filter, nb_row, nb_col,
padding='same', strides=(1, 1),
activation='relu', LRN2D_norm=True, bias_initializer='zeros',kernel_initializer='glorot_uniform',
weight_decay=WEIGHT_DECAY, data_format="channels_first",name='conv'):
'''
Info:
Function taken from the Inceptionv3.py script keras github
Utility function to apply to a tensor a module Convolution + lrn2d
with optional weight decay (L2 weight regularization).
'''
if weight_decay:
W_regularizer = regularizers.l2(weight_decay)
b_regularizer = regularizers.l2(weight_decay)
else:
W_regularizer = None
b_regularizer = None
x = Conv2D(nb_filter, (nb_row, nb_col), bias_regularizer=b_regularizer,
activation=activation,
data_format="channels_first",
padding=padding,
strides=strides,
bias_initializer='zeros',kernel_initializer='glorot_uniform',
kernel_regularizer=W_regularizer, use_bias=False,name=name)(x)
x = ZeroPadding2D(padding=(1, 1), data_format="channels_first")(x)
if LRN2D_norm:
x = LRN2D(alpha=ALPHA, beta=BETA)(x)
x = ZeroPadding2D(padding=(1, 1), data_format="channels_first")(x)
return x
评论列表
文章目录