def Alexnet(height, width, weights_path=None):
model = Sequential()
model.add(ZeroPadding2D((1, 1), input_shape=(3, height, width)))
model.add(Convolution2D(64, 11, 11, border_mode="same", activation="relu"))
model.add(BatchNormalization())
model.add(ZeroPadding2D((1, 1)))
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Convolution2D(128, 7, 7, border_mode="same", activation="relu"))
model.add(BatchNormalization())
model.add(ZeroPadding2D((1, 1)))
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Convolution2D(192, 3, 3, border_mode="same", activation="relu"))
model.add(BatchNormalization())
model.add(ZeroPadding2D((1, 1)))
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Convolution2D(256, 3, 3, border_mode="same", activation="relu"))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Flatten())
model.add(Dense(4096, init='normal', activation="relu"))
model.add(BatchNormalization())
model.add(Dense(512, init='normal', activation="relu"))
model.add(BatchNormalization())
model.add(Dense(2, init='normal', activation="softmax"))
if weights_path:
print("Loading weights...", end='\t')
model.load_weights(weights_path)
print("Finished.")
return model
评论列表
文章目录